资源类型

期刊论文 119

年份

2023 6

2022 8

2021 14

2020 7

2019 6

2018 4

2017 8

2016 5

2015 3

2014 3

2013 5

2012 5

2011 5

2010 4

2009 5

2008 5

2007 4

2006 4

2005 4

2004 5

展开 ︾

关键词

玻璃 3

圆柱 2

大块金属玻璃 2

玻璃形成能力 2

玻璃钢 2

60 GHz;封装天线;共面波导馈电环形谐振器;玻璃集成无源器件;超表面天线;小型化天线 1

COVID-19 1

WiFi多频天线 1

k-ε模型 1

“∞”形 1

三维有限元 1

临时矿壁 1

互花米草 1

井壁监测 1

井壁稳定 1

井帮位移 1

介质谐振器天线 1

传热过程 1

低成本化 1

展开 ︾

检索范围:

排序: 展示方式:

Nonlinear analysis of pre-tensioned glass wall facade by stability function with initial imperfection

Siu-Lai CHAN, Yaopeng LIU, Andy LEE,

《结构与土木工程前沿(英文)》 2010年 第4卷 第3期   页码 376-382 doi: 10.1007/s11709-010-0086-2

摘要: Pre-tensioned high strength trusses using alloy steel bar are widely used as glass wall supporting systems because of the high degree of transparency. The breakage of glass panes in this type of system occurs occasionally, likely to be due to error in design and analysis in addition to other factors like glass impurity and stress concentration around opening in a spider system. Most design does not consider the flexibility of supports from finite stiffness of supporting steel or reinforced concrete beams. The resistance of lateral wind pressure of the system makes use of high tension force coupled with the large deflection effect, both of which are affected by many parameters not generally considered in conventional structures. In the design, one must therefore give a careful consideration on various effects, such as support settlement due to live loads and material creep, temperature change, pre-tension force, and wind pressure. It is not uncommon to see many similar glass wall systems fail in the wind load test chambers under a design wind speed. This paper presents a rigorous analysis and design of this type of structural systems used in a project in Hong Kong, China. The stability function with initial curvature is used in place of the cubic function, which is only accurate for linear analysis. The considerations and analysis techniques are believed to be of value to engineers involved in the design of the structural systems behaving nonlinearly.

关键词: tension system     glass wall     nonlinear analysis     pre-tensioning     second-order analysis    

Influence of damages on static behavior of single-layer cable net supported glass curtain wall: full-scale

Gang SHI, Yongjiu SHI, Yuanqing WANG, Yongzhi ZUO, Xiaohao SHI, Zaoyang GUO,

《结构与土木工程前沿(英文)》 2010年 第4卷 第3期   页码 383-395 doi: 10.1007/s11709-010-0074-6

摘要: The single-layer cable net supported glass curtain wall has been applied in many building structures all over the world. In service, it will inevitably be subject to various damages. To study the influence of such damages on the static behavior of the single-layer cable net supported glass curtain wall, a full-scale model with the outside outline size of 4.85 m × 4.85 m and 4 × 4 grids is designed and tested. Two kinds of damages that are the cable prestress loss and cable anchorage end failure are led into the structure model during the test, and their influence has been investigated. The stiffness contribution of glass panels to the single-layer cable net supported glass curtain wall structure with or without damages and its change have been tested and analyzed. The results show that the maximum change rate of nodal deflection is 13.78% for the damage of cable prestress loss, while the change rate of nodal deflection is between 7% and 22% for the damage of cable anchorage end failure. The influence degree of the damages depends on the ratio of the structure initial stress stiffness change caused by damages to the total stiffness of the structure. The stiffness contribution of glass panels increases with the load increase. Under the same loading condition, the stiffness contribution of glass panels to the damaged structure is greater than that to the intact structure. The stiffness contribution of glass panels reduces the effect of the damages on the structural displacement and the cable tension force, but the glass panel could break if its stiffness contribution is too large.

关键词: single-layer plane cable net supported glass curtain wall     damage     cable prestress loss     cable anchorage end failure     stiffness contribution of glass panels    

玻璃隔墙防火性能评估研究

张庆文,张和平,杨昀,姚斌,杨健鹏

《中国工程科学》 2005年 第7卷 第12期   页码 83-87

摘要:

玻璃隔墙在现代大型建筑中的大量使用给建筑防火设计、审查和验收带来了挑战;分析了传统防火设计规范中对于玻璃隔墙的规定,总结了其优点和不足之处,并引入性能化防火设计的方法,对玻璃隔墙的防火性能进行评估研究;给出了玻璃隔墙的防火性能指标和传热计算的方法,结合某会展中心的具体案例对玻璃隔墙防火性能评估方法进行了阐述。评估结果可为玻璃隔墙防火设计、审核和验收工作提供依据。

关键词: 玻璃隔墙     防火     性能化     评估    

An investigation into the properties of ternary and binary cement pastes containing glass powder

Marcelo Frota BAZHUNI, Mahsa KAMALI, Ali GHAHREMANINEZHAD

《结构与土木工程前沿(英文)》 2019年 第13卷 第3期   页码 741-750 doi: 10.1007/s11709-018-0511-5

摘要: The properties of binary and ternary cement pastes containing glass powder (GP) were examined. Hydration at early age was evaluated using semi-adiabatic calorimetry and at late ages using non-evaporable water content and thermogravimetric analysis. The transport characteristic was assessed by measuring electrical resistivity. The binary paste with slag showed the highest hydration activity compared to the binary pastes with GP and fly ash (FA). The results indicated that the pozzolanic behavior of the binary paste with GP was less than that of the binary pastes with slag or FA at late ages. An increase in the electrical resistivity and compressive strength of the binary paste with GP compared to other modified pastes at late ages was observed. It was shown that GP tends to increase the drying shrinkage of the pastes. Ternary pastes containing GP did not exhibit synergistic enhancements compared to the respective binary pastes.

关键词: cement paste     glass powder     pozzolanic reaction     supplementary cementitious material    

Precision glass molding: Toward an optimal fabrication of optical lenses

Liangchi ZHANG,Weidong LIU

《机械工程前沿(英文)》 2017年 第12卷 第1期   页码 3-17 doi: 10.1007/s11465-017-0408-3

摘要:

It is costly and time consuming to use machining processes, such as grinding, polishing and lapping, to produce optical glass lenses with complex features. Precision glass molding (PGM) has thus been developed to realize an efficient manufacture of such optical components in a single step. However, PGM faces various technical challenges. For example, a PGM process must be carried out within the super-cooled region of optical glass above its glass transition temperature, in which the material has an unstable non-equilibrium structure. Within a narrow window of allowable temperature variation, the glass viscosity can change from 105 to 1012 Pa·s due to the kinetic fragility of the super-cooled liquid. This makes a PGM process sensitive to its molding temperature. In addition, because of the structural relaxation in this temperature window, the atomic structure that governs the material properties is strongly dependent on time and thermal history. Such complexity often leads to residual stresses and shape distortion in a lens molded, causing unexpected changes in density and refractive index. This review will discuss some of the central issues in PGM processes and provide a method based on a manufacturing chain consideration from mold material selection, property and deformation characterization of optical glass to process optimization. The realization of such optimization is a necessary step for the Industry 4.0 of PGM.

关键词: precision glass molding     optical lens     constitutive modeling     optimization     manufacturing chain     Industry 4.0    

Progress of three-dimensional macroporous bioactive glass for bone regeneration

Lijun JI, Yunfeng SI, Ailing LI, Wenjun WANG, Dong QIU, Aiping ZHU

《化学科学与工程前沿(英文)》 2012年 第6卷 第4期   页码 470-483 doi: 10.1007/s11705-012-1217-1

摘要: Bioactive glasses (BGs) are ideal materials for macroporous scaffolds due to their excellent osteoconductive, osteoinductive, biocompatible and biodegradable properties, and their high bone bonding rates. Macroporous scaffolds made from BGs are in high demand for bone regeneration because they can stimulate vascularized bone ingrowth and they enhance bonding between scaffolds and surrounding tissues. Engineering BG/biopolymers (BP) composites or hybrids may be a good way to prepare macroporous scaffolds with excellent properties. This paper summarizes the progress in the past few years in preparing three-dimensional macroporous BG and BG/BP scaffolds for bone regeneration. Since the brittleness of BGs is a major problem in developing macroporous scaffolds and this limits their use in load bearing applications, the mechanical properties of macroporous scaffolds are particularly emphasized in this review.

关键词: bioactive glass     biopolymer     bone regeneration     macroporous scaffolds     tissue engineering    

Recycled glass replacement as fine aggregate in self-compacting concrete

Yasser SHARIFI, Mahmoud HOUSHIAR, Behnam AGHEBATI

《结构与土木工程前沿(英文)》 2013年 第7卷 第4期   页码 419-428 doi: 10.1007/s11709-013-0224-8

摘要: With increasing environmental pressure to reduce solid waste and to recycle as much as possible, the concrete industry has adopted a number of methods to achieve this goal by replacement of waste glass with concrete composition materials. Due to differences in mixture design, placement and consolidation techniques, the strength and durability of Self Compacting Concrete (SCC) may be different than those of conventional concrete. Therefore, replacement of waste glass with fine aggregate in SCC should deeply be investigated compared to conventional concretes. The aim of the present study is to investigate the effect of glass replacement with fine aggregate on the SCC properties. In present study, fine aggregate has been replaced with waste glass in six different weight ratios ranging from 0% to 50%. Fresh results indicate that the flow-ability characteristics have been increased as the waste glass incorporated to paste volume. Nevertheless, compressive, flexural and splitting strengths of concrete containing waste glass have been shown to decrease when the content of waste glass is increased. The strength reduction of concrete in different glass replacement ratios is not remarkable, thus it can be produced SCC with waste glass as fine aggregate in a standard manner.

关键词: Self Compacting Concrete (SCC)     recycle glass     fine aggregate     fresh and hardened properties    

Review of small aspheric glass lens molding technologies

Shaohui YIN,Hongpeng JIA,Guanhua ZHANG,Fengjun CHEN,Kejun ZHU

《机械工程前沿(英文)》 2017年 第12卷 第1期   页码 66-76 doi: 10.1007/s11465-017-0417-2

摘要:

Aspheric lens can eliminate spherical aberrations, coma, astigmatism, field distortions, and other adverse factors. This type of lens can also reduce the loss of light energy and obtain high-quality images and optical characteristics. The demand for aspheric lens has increased in recent years because of its advantageous use in the electronics industry, particularly for compact, portable devices and high-performance products. As an advanced manufacturing technology, the glass lens molding process has been recognized as a low-cost and high-efficiency manufacturing technology for machining small-diameter aspheric lens for industrial production. However, the residual stress and profile deviation of the glass lens are greatly affected by various key technologies for glass lens molding, including glass and mold-die material forming, mold-die machining, and lens molding. These key technical factors, which affect the quality of the glass lens molding process, are systematically discussed and reviewed to solve the existing technical bottlenecks and problems, as well as to predict the potential applicability of glass lens molding in the future.

关键词: aspheric glass lens     mold-die manufacturing     lens molding     molding process simulation    

Numerical simulation of squat reinforced concrete wall strengthened by FRP composite material

Ali KEZMANE,Said BOUKAIS,Mohand Hamizi

《结构与土木工程前沿(英文)》 2016年 第10卷 第4期   页码 445-455 doi: 10.1007/s11709-016-0339-9

摘要: The advanced design rules and the latest known earthquakes, have imposed a strengthening of reinforced concrete structures. Many research works and practical achievements of the application of the external reinforcement by using FRP composite materials have been particularly developed in the recent years. This type of strengthening seems promising for the seismic reinforcement of buildings. Among of the components of structures that could affect the stability of the structure in case of an earthquake is the reinforced concrete walls, which require in many cases a strengthening, especially in case where the diagonal cracks can be developed. The intent of this paper is to present a numerical simulation of squat reinforced concrete wall strengthened by FRP composite material (carbon fiber epoxy). The intent of this study is to perform finite element model to investigate the effects of such reinforcement in the squat reinforced concrete walls. Taking advantage of a commercial finite element package ABAQUS code, three-dimensional numerical simulations were performed, addressing the parameters associated with the squat reinforced concrete walls. An elasto-plastic damage model material is used for concrete, for steel, an elastic-plastic behavior is adopted, and the FRP composite is considered unidirectional and orthotropic. The obtained results in terms of displacements, stresses, damage illustrate clearly the importance of this strengthening strategy.

关键词: simulation     strengthening     reinforced concrete wall     squat wall     FRP composite material     damage     Abaqus    

Recent advancements in optical microstructure fabrication through glass molding process

Tianfeng ZHOU,Xiaohua LIU,Zhiqiang LIANG,Yang LIU,Jiaqing XIE,Xibin WANG

《机械工程前沿(英文)》 2017年 第12卷 第1期   页码 46-65 doi: 10.1007/s11465-017-0425-2

摘要:

Optical microstructures are increasingly applied in several fields, such as optical systems, precision measurement, and microfluid chips. Microstructures include microgrooves, microprisms, and microlenses. This paper presents an overview of optical microstructure fabrication through glass molding and highlights the applications of optical microstructures in mold fabrication and glass molding. The glass-mold interface friction and adhesion are also discussed. Moreover, the latest advancements in glass molding technologies are detailed, including new mold materials and their fabrication methods, viscoelastic constitutive modeling of glass, and microstructure molding process, as well as ultrasonic vibration-assisted molding technology.

关键词: optical microstructure     microgroove     microlens     glass molding process     single-point diamond cutting    

Assessment of glass fiber-reinforced polyester pipe powder in soil improvement

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 742-753 doi: 10.1007/s11709-021-0732-x

摘要: This study investigates the use of glass fiber-reinforced polyester (GRP) pipe powder (PP) for improving the bearing capacity of sandy soils. After a series of direct share tests, the optimum PP addition for improving the bearing capacity of soils was found to be 12%. Then, using the optimum PP addition, the bearing capacity of the soil was estimated through a series of loading tests on a shallow foundation model placed in a test box. The bearing capacity of sandy soil was improved by up to 30.7%. The ratio of the depth of the PP-reinforced soil to the diameter of the foundation model (H/D) of 1.25 could sufficiently strengthen sandy soil when the optimum PP ratio was used. Microstructural analyses showed that the increase in the bearing capacity can be attributed to the chopped fibers in the PP and their multiaxial distribution in the soil. Besides improving the engineering properties of soils, using PP as an additive in soils would reduce the accumulation of the industrial waste, thus providing a twofold benefit.

关键词: shallow foundation     sandy soil     bearing capacity     soil improvement     pipe powder    

Mechanical properties of steel, glass, and hybrid fiber reinforced reactive powder concrete

Atheer H.M. ALGBURI, M. Neaz SHEIKH, Muhammad N.S. HADI

《结构与土木工程前沿(英文)》 2019年 第13卷 第4期   页码 998-1006 doi: 10.1007/s11709-019-0533-7

摘要: This study examines the properties of fiber-reinforced reactive powder concrete (FR-RPC). Steel fibers, glass fibers, and steel-glass hybrid fibers were used to prepare the FR-RPC. The non-fibrous reactive powder concrete (NF-RPC) was prepared as a reference mix. The proportion of fibers by volume for all FR-RPC mixes was 1.5%. Steel fibers of 13 mm length and 0.2 mm diameter were used to prepare the steel fiber-reinforced RPC (SFR-RPC). Glass fibers of 13 mm length and 1.3 mm diameter were used to prepare the glass fiber-reinforced RPC (GFR-RPC). The hybrid fiber-reinforced RPC (HFR-RPC) was prepared by mixing 0.9% steel fibers and 0.6% glass fibers. Compressive strength, axial load-axial deformation behavior, modulus of elasticity, indirect tensile strength, and shear strength of the RPC mixes were investigated. The results showed that SFR-RPC achieved higher compressive strength, indirect tensile strength and shear strength than NF-RPC, GFR-RPC, and HFR-RPC. Although the compressive strengths of GFR-RPC and HFR-RPC were slightly lower than the compressive strength of NF-RPC, the shear strengths of GFR-RPC and HFR-RPC were higher than that of NF-RPC.

关键词: reactive powder concrete     steel fiber     glass fiber     hybrid fiber    

Diaphragm wall-soil-cap interaction in rectangular-closed- diaphragm-wall bridge foundations

Hua WEN, Qiangong CHENG, Fanchao MENG, Xiaodong CHEN

《结构与土木工程前沿(英文)》 2009年 第3卷 第1期   页码 93-100 doi: 10.1007/s11709-009-0015-4

摘要: Rectangular-closed-diaphragm-wall foundation is a new type of bridge foundation. Diaphragm wall-soil-cap interaction was studied using a model test. It was observed that the distribution of soil resistance under the cap is not homogeneous. The soil resistance in the corner under the cap is larger than that in the border; and that in the center is the smallest. The distribution of soil resistance under the cap will be more uniform, if the sectional area of soil core is enlarged within a certain range. Due to the existence of cap, there is a “weakening effect” in inner shaft resistance of the upper wall segments, and there is “enhancement effect” in the lower wall segments and in toe resistance. The load shearing percentage of soil resistance under the cap is 10%-20%. It is unreasonable to ignore the effects of the cap and the soil resistance under the cap in bearing capacity calculations.

关键词: diaphragm wall     bridge foundation     low cap     interaction    

Seismic response of precast reinforced concrete wall subjected to cyclic in-plane and constant out-of-plane

《结构与土木工程前沿(英文)》 2021年 第15卷 第5期   页码 1128-1143 doi: 10.1007/s11709-021-0753-5

摘要: This paper provides insight into the seismic behavior of a full-scale precast reinforced concrete wall under in-plane cyclic loading combined with out-of-plane loading replicated by sand backfill to simulate the actual condition of basement walls. The tested wall exhibited flexural cracks, owing to the high aspect ratio and considerable out-of-plane movement due to lateral pressure from the backfill. The wall performed satisfactorily by exhibiting competent seismic parameters and deformation characteristics governed by its ductile response in the nonlinear phase during the test with smaller residual drift. Numerical analysis was conducted to validate experimental findings, which complied with each other. The numerical model was used to conduct parametric studies to study the effect of backfill density and aspect ratio on seismic response of the proposed precast wall system. The in-plane capacity of walls reduced, while deformation characteristics were unaffected by the increase in backfill density. An increase in aspect ratio leads to a reduction in in-plane capacity and an increase in drift. Curves between the ratio of in-plane yield capacity and design shear load of walls are proposed for the backfill density, which may be adopted to determine the in-plane yield capacity of the basement walls based on their design shear.

关键词: precast wall     basement wall     out-of-plane response     quasi-static test     sand backfill     seismic parameters    

Fatigue shear performance of concrete beams reinforced with hybrid (glass-fiber-reinforced polymer+ steel

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 576-594 doi: 10.1007/s11709-021-0728-6

摘要: Reinforced concrete beams consisting of both steel and glass-fiber-reinforced polymer rebars exhibit excellent strength, serviceability, and durability. However, the fatigue shear performance of such beams is unclear. Therefore, beams with hybrid longitudinal bars and hybrid stirrups were designed, and fatigue shear tests were performed. For specimens that failed by fatigue shear, all the glass-fiber-reinforced polymer stirrups and some steel stirrups fractured at the critical diagonal crack. For the specimen that failed by the static test after 8 million fatigue cycles, the static capacity after fatigue did not significantly decrease compared with the calculated value. The initial fatigue level has a greater influence on the crack development and fatigue life than the fatigue level in the later phase. The fatigue strength of the glass-fiber-reinforced polymer stirrups in the specimens was considerably lower than that of the axial tension tests on the glass-fiber-reinforced polymer bar in air and beam-hinge tests on the glass-fiber-reinforced polymer bar, and the failure modes were different. Glass-fiber-reinforced polymer stirrups were subjected to fatigue tension and shear, and failed owing to shear.

关键词: fatigue     shear     hybrid stirrups     hybrid reinforcement     fiber-reinforced polymer    

标题 作者 时间 类型 操作

Nonlinear analysis of pre-tensioned glass wall facade by stability function with initial imperfection

Siu-Lai CHAN, Yaopeng LIU, Andy LEE,

期刊论文

Influence of damages on static behavior of single-layer cable net supported glass curtain wall: full-scale

Gang SHI, Yongjiu SHI, Yuanqing WANG, Yongzhi ZUO, Xiaohao SHI, Zaoyang GUO,

期刊论文

玻璃隔墙防火性能评估研究

张庆文,张和平,杨昀,姚斌,杨健鹏

期刊论文

An investigation into the properties of ternary and binary cement pastes containing glass powder

Marcelo Frota BAZHUNI, Mahsa KAMALI, Ali GHAHREMANINEZHAD

期刊论文

Precision glass molding: Toward an optimal fabrication of optical lenses

Liangchi ZHANG,Weidong LIU

期刊论文

Progress of three-dimensional macroporous bioactive glass for bone regeneration

Lijun JI, Yunfeng SI, Ailing LI, Wenjun WANG, Dong QIU, Aiping ZHU

期刊论文

Recycled glass replacement as fine aggregate in self-compacting concrete

Yasser SHARIFI, Mahmoud HOUSHIAR, Behnam AGHEBATI

期刊论文

Review of small aspheric glass lens molding technologies

Shaohui YIN,Hongpeng JIA,Guanhua ZHANG,Fengjun CHEN,Kejun ZHU

期刊论文

Numerical simulation of squat reinforced concrete wall strengthened by FRP composite material

Ali KEZMANE,Said BOUKAIS,Mohand Hamizi

期刊论文

Recent advancements in optical microstructure fabrication through glass molding process

Tianfeng ZHOU,Xiaohua LIU,Zhiqiang LIANG,Yang LIU,Jiaqing XIE,Xibin WANG

期刊论文

Assessment of glass fiber-reinforced polyester pipe powder in soil improvement

期刊论文

Mechanical properties of steel, glass, and hybrid fiber reinforced reactive powder concrete

Atheer H.M. ALGBURI, M. Neaz SHEIKH, Muhammad N.S. HADI

期刊论文

Diaphragm wall-soil-cap interaction in rectangular-closed- diaphragm-wall bridge foundations

Hua WEN, Qiangong CHENG, Fanchao MENG, Xiaodong CHEN

期刊论文

Seismic response of precast reinforced concrete wall subjected to cyclic in-plane and constant out-of-plane

期刊论文

Fatigue shear performance of concrete beams reinforced with hybrid (glass-fiber-reinforced polymer+ steel

期刊论文